Fast stochastic simulation of biochemical reaction systems by alternative formulations of the chemical Langevin equation.

نویسندگان

  • Bence Mélykúti
  • Kevin Burrage
  • Konstantinos C Zygalakis
چکیده

The Chemical Langevin Equation (CLE), which is a stochastic differential equation driven by a multidimensional Wiener process, acts as a bridge between the discrete stochastic simulation algorithm and the deterministic reaction rate equation when simulating (bio)chemical kinetics. The CLE model is valid in the regime where molecular populations are abundant enough to assume their concentrations change continuously, but stochastic fluctuations still play a major role. The contribution of this work is that we observe and explore that the CLE is not a single equation, but a parametric family of equations, all of which give the same finite-dimensional distribution of the variables. On the theoretical side, we prove that as many Wiener processes are sufficient to formulate the CLE as there are independent variables in the equation, which is just the rank of the stoichiometric matrix. On the practical side, we show that in the case where there are m(1) pairs of reversible reactions and m(2) irreversible reactions there is another, simple formulation of the CLE with only m(1) + m(2) Wiener processes, whereas the standard approach uses 2(m(1) + m(2)). We demonstrate that there are considerable computational savings when using this latter formulation. Such transformations of the CLE do not cause a loss of accuracy and are therefore distinct from model reduction techniques. We illustrate our findings by considering alternative formulations of the CLE for a human ether a-go-go related gene ion channel model and the Goldbeter-Koshland switch.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Accurate hybrid stochastic simulation of a system of coupled chemical or biochemical reactions.

The dynamical solution of a well-mixed, nonlinear stochastic chemical kinetic system, described by the Master equation, may be exactly computed using the stochastic simulation algorithm. However, because the computational cost scales with the number of reaction occurrences, systems with one or more "fast" reactions become costly to simulate. This paper describes a hybrid stochastic method that ...

متن کامل

The Effects of Different SDE Calculus on Dynamics of Nano-Aerosols Motion in Two Phase Flow Systems

Langevin equation for a nano-particle suspended in a laminar fluid flow was analytically studied. The Brownian motion generated from molecular bombardment was taken as a Wiener stochastic process and approximated by a Gaussian white noise. Euler-Maruyama method was used to solve the Langevin equation numerically. The accuracy of Brownian simulation was checked by performing a series of simulati...

متن کامل

Stochastic Modeling in Systems Biology

Many cellular behaviors are regulated by gene regulation networks, kinetics of which is one of the main subjects in the study of systems biology. Because of the low number molecules in these reacting systems, stochastic effects are significant. In recent years, stochasticity in modeling the kinetics of gene regulation networks have been drawing the attention of many researchers. This paper is a...

متن کامل

Alternative formulations and moment estimates for the chemical Langevin equation

The chemical Langevin equation (CLE) is a multivariable Itô stochastic differential equation that describes the time evolution of molecular counts of reacting chemical species (Gillespie, 2000). It lies between the deterministic ordinary differential equation (ODE) model and the discrete probabilistic chemical master equation model in that it is continuous and probabilistic. Suppose n chemical ...

متن کامل

An equation-free probabilistic steady-state approximation: dynamic application to the stochastic simulation of biochemical reaction networks.

Stochastic chemical kinetics more accurately describes the dynamics of "small" chemical systems, such as biological cells. Many real systems contain dynamical stiffness, which causes the exact stochastic simulation algorithm or other kinetic Monte Carlo methods to spend the majority of their time executing frequently occurring reaction events. Previous methods have successfully applied a type o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of chemical physics

دوره 132 16  شماره 

صفحات  -

تاریخ انتشار 2010